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ABSTRACT 

In the present work, the volume exclusion phenomenon, also known as macromolecular 
crowding, has been applied to the field of enzyme kinetics. It has been approached by 
adding polymeric obstacles in the media of different enzymatic reactions. The 
concentration and size of these obstacles have been changed systematically in order to 
obtain kinetic information about each reaction. Results indicate that the performance of a 
certain enzyme always depends on the amount of excluded volume. However, only large, 
oligomeric proteins display an obstacle size-dependent behavior. Besides, crowding can 
hinder diffusion to the extent of being capable of shifting reaction control from activation 
to diffusion. 
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1. INTRODUCTION 

Physicochemical characterization of biomolecules, both theoretically and experimentally, 
has been traditionally developed in dilute solution conditions. This scenario, even though easy 
to study and close to ideal condition, does not resemble the real situation inside cells: the cell 
cytosol contains macromolecules up to 300-400 g/L, and the space in it is highly structured 
and compartmented [1]. 

However, studying biomolecules in their natural environment is still impossible for most 
biological processes at molecular scale, and it can lead to a dead end: having such a great 
number of variables that the outcome may be impossible to interpret and comprehend. Thus, 
all the interrelations between the biological system (e.g. a protein and its substrates) and its 
environment must be studied separately in a model system.  

Macromolecular crowding aims to mimic the high levels of excluded volume existing in 
the cell and tries to discern how this can affect any physicochemical process occurring inside 
[2,3]. It is achieved by experimentally modelling the cytosol using a wide variety of neutral, 
relatively inert and random-coil shaped macromolecules, such as Dextrans, Ficolls or 
Polyethylene glycol (PEG).  

Ultimately, an in-vivo-like environment is sought, an in vitro environment that truly 
reconstructs the cell cytosol by all means: obstacles of different sizes all together, confined 
spaces, filamentous structures similar to the cytoskeleton… Yet, this is still far away since the 
effect of excluded volume with homogeneously sized, coil-shaped obstacles is yet to be fully 
understood. Such artificial recreation of the cell environment could be useful in drug and 
protein therapy development and routine enzyme activity assays. This will allow obtaining 
activity values which are closer to the physiological ones rather than if tested in dilute 
solution. Thus, the use of synthetic polymers, allows avoiding the inconveniences and costs 
of cell cultures or animal manipulation in pre-clinical stages, as well as providing more 
realistic values for systems biology approaches.  

Excluded volume is just one of the effects that a macromolecule can face inside the cell, 
but it has been shown to be relevant in a wide variety of biological phenomena, in particular 
when proteins are involved [3], which include macromolecule diffusion [4-6], 
macromolecular interactions [7-8], protein stability [9], conformational equilibria [10] or 
enzyme kinetics [10-21]. 

In the past years, research focus has been set on enzyme kinetics. A decent number of 
enzymatic reactions have been studied in crowding conditions, but still few trends are 
understood. In terms of Michaelis-Menten kinetic parameters, in the majority of cases 
maximum velocity, vmax, decreases [13,14, 17-19, 21], but in a few cases the overall enzyme 
activity has been found to increase [11, 14-16], and the Michaelis constant, Km, that 
represents the affinity of the enzyme to bind the substrate, can increase [11, 16, 17], decrease 
[13-15, 18, 19, 21] or remain constant [19]. 

One trend that has seen some light in the last years is the enzyme/obstacle size ratio. 
Results suggest that small enzymes reaction rates are influenced by the amount of excluded 
volume – that is obstacle concentration – and not by obstacle size; while bigger enzymes are 
affected by both obstacle size and concentration [12, 19-21]. 

Besides, the effects of macromolecular crowding seem to differ between diffusion-
controlled reactions and activation-controlled reactions. In fact, such effect is rather intuitive 
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since it has been proven that macromolecular crowding can alter protein diffusion [4-6] and it 
can also modify conformational dynamics of the active site [22].  

Both issues will be addressed in the present review, which aims to contribute in setting 
general trends about mechanisms by which excluded volume effects may alter the function of 
enzymes. 

2. METHODS/MODELS 

2.1. Theoretical Model 

Kinetic behaviour of enzymes under crowded media conditions may be studied using the 
reaction scheme proposed by Henry in 1902 of a single-substrate, single-enzyme-catalysed 
reaction, and known as irreversible Michaelis-Menten scheme [23]: 

 

 

          (1) 

 
 

which can be solved approximately using the stationary state assumption, SSA (d[ES]⁄dt  ≈ 
0), which is less restrictive than the reactant stationary assumption, RSA ([S] ≈ [S]0), (see the 
recent review of Schnell for a detailed discussion) [24], to yield the well-known Michaelis-
Menten equation: 
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Therefore, the reactant stationary assumption, RSA, is a stronger condition than the required 
for the steady-state assumption, SSA, and it can be seen as a necessary condition for the 
steady-state assumption [24]. 

In fact, the Michaelis-Menten equation (2) often fits the behaviour of enzymatic reactions 
with a known different mechanism than the one depicted in scheme (1), even for bi-substrate 
reactions in pseudo-first order conditions. Such easy fitting allows us to use it to approach a 
wide variety of enzymatic reactions, taking the values of the kinetic parameters as apparent 
values, allow us to generalize the Michaelis-Menten equation (2) as: 
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where appvmax  and app
mK  are the apparent maximum velocity and apparent Michaelis constant 

which can be put in terms of the kinetic parameters of the detailed mechanism involved [23]. 

In principle, in order to evaluate the effect that crowding may exert to different reaction 
mechanisms, numerical integration of temporal progression of the different reaction 
components would be necessary. This issue will be addressed in future steps. However, to 
evaluate the effect of macromolecular crowding in a given enzymatic reaction, obtaining 
apparent kinetic parameters and being able to study their fluctuations upon different 
experimental conditions is significant enough by itself. 

2.2. Experimental Methods 

Three enzymatic systems were studied in comparable conditions: bovine pancreas alpha-
chymotrypsin (E.C. 3.4.21.1), horseradish peroxidase (HRP, E.C. 1.11.1.7) and rabbit muscle 
L-lactate dehydrogenase (LDH, E.C. 1.1.1.27), used without further purification. The three 
enzymes as well as all the reagents necessary for the reactions they catalyse – detailed in 
Table 1 - were purchased from Sigma-Aldrich Chemical (Milwaukee, WI, USA).  

Dextrans, with a range of molecular weights from 5 to 410 kDa, were used as crowding 
agents: D5 (5 kDa), D50 (50 kDa), D150 (150 kDa), D275 (275 kDa) and D410 (410 kDa) 
were obtained from Fluka (Buchs, Switzerland).  

Activity measurements of each enzyme were followed spectroscopically using UV-1603, and 
UV-1700 Shimadzu spectrophotometers through the absorption of reagents or products at the 
wavelengths specified in Table 1. All the experimental conditions tested during these studies 
are shown in Table 1 – regarding enzyme and substrate concentrations – and in Table 2 – 
regarding crowding agent sizes and concentrations. It is worth mentioning that since 
crowding agent concentrations are calculated in weight, they are directly related to the 
amount of excluded volume.  

Moreover, all the studied systems present a negligible volume change in the reaction process 
(that is substrates and products are similar in size and much smaller than the enzymes). 

Comprehensive experimental details and complete information about the aforementioned 
enzymatic reactions are described in previous references, as well as the complete results 
obtained for each reaction in crowded media [17-19]. 
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Table 1: Enzymes and substrates concentrations, buffer and ionic strength experimental 
conditions and reaction tracking method. 

Enzymes Substrates  Buffer solution Reaction tracking 

Alpha-
chymotrypsin 
from bovine 

pancreas type II 
 

Peroxidase from 
horseradish 

 
 

L-Lactate 
dehydrogenase 

from rabbit 
muscle 

 
 

N-succinyl-L-
phenyl-Ala-p-

nitroanilide 
(0 - 4.8 · 10−4 M) 

 
ABTS 

diammonium salt 
(0 - 23 · 10−4 M) 

 
Sodium pyruvate 
(0 - 5.4 · 10−4 M) 

 
 
 
 

 
 
 
 

H2O2 (33% 
aq.) 

(10 · 10−4 
M) 

 
 

β-NADH 
(1.17 · 10−4 

M) 

Tris-HCl 0.1 M 
pH = 8.0 10 mM 

CaCl2 
 
 

Phosphate buffer 
0.1 M pH = 7.4 

 
 

Imidazole-
CH3COOH 30 
mM pH = 7.5 

60 mM 
CH3COOK 

30 mM MgCl2 

Monitored by UV–vis 
spectroscopy at λ =410 nm 

(25 °C) 
 
 

Monitored by UV–vis 
spectroscopy at λ =414 nm 

(25 °C) 
 
 

Monitored by UV–vis 
spectroscopy at λ =320 nm 

(25 °C) 
 
 

 

Table 2: Experimental conditions assayed in crowded media: dextran molecular weight, 
gyration radius and dextran concentrations used. 

 D50 D150 D275 D410 
Dextran molecular weight, MW (kDa) 
 

48.6 150 275 409.8 

Dextran gyration radius, Rg (nm) 
 

5.8 11.2 14.7 17 

Dextran concentrations used 
in crowded media experiments (g/L) 

25, 50, 100 
 

25, 50, 100
 

25, 50, 100 
 

25, 50, 100 
 

Data analysis was performed assuming the validity of Michaelis-Menten theory and thus of 
the steady-state approximation, which is realistic in our experimental conditions and 
according to previous references [17-19]. Initial velocity values (v0) were obtained by linear 
fitting of the initial part of each absorbance-time plot for each single experiment mentioned in 
Tables 1 and 2, repeating each one for 3 to 5 times with independent samples.  

3. RESULTS AND DISCUSSION 

3.1. Results   

α-Chymotrypsin: 25 kDa 
An initial linear raise and a subsequent plateau in the absorbance/time plot upon N-

succinyl-L-phenyl-Ala-p-nitroanilide depletion were observed. Following the kinetics of this 
reaction under all the conditions depicted combining Table 1 and Table 2, one can observe 
that kinetic parameters of this reaction depend on obstacle concentration – that is excluded 
volume – but not on obstacle size, as seen in Figure 1A. 
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Figure 1: Maximum velocity (vmax) versus crowding agent size (from 5 to 410 kDa) for three 
different enzymes: A) α-Chymotrypsin, B) HRP, C) LDH. Each point corresponds to an average 

value with standard deviation of 3 to 5 single experiments in different conditions: in dilute 
solution (black squares) and at increasing concentrations of dextran as crowding agents: 25 g/L 

(red circles), 50 g/L (green up-triangles) and 100 g/L (blue down-triangles). 
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In accordance to these results, a previous study on the diffusion of this enzyme revealed 
that its diffusion depended strongly on crowding agent concentration and only slightly on 
crowding agent size, in the same buffer and ionic strength conditions [5].  

In particular, it was found that v_max decreased, whereas Km increased when increasing 
Dextran concentration present in the sample [17], as depicted in Fig. 2A and Fig. 3A. 
 
 
Figure 2: Relative vmax in dextran media for three different enzymes: A) α-chymotrypsin, B) HRP, 
C) LDH, in dextran concentrations ranging from 25 to 100 g/L (increasing from dark to light tone) 

of increasing dextran sizes: D50, D150, D275 and D410. 

 

 

 
 

 

A 

B 
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Figure 3: Relative Km in dextran media for three different enzymes: A) α-chymotrypsin, B) HRP, 
C) LDH, in dextran concentrations ranging from 25 to 100 g/L (increasing from dark to light tone) 
of increasing dextran sizes: D50, D150, D275 and D410. Note that in figure 3C, relative KM axis is 

shown from 0.6 to 1. 
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Horseradish peroxidase (HRP): 42 kDa 

 
We studied the effect of macromolecular crowding in the oxidation of 2,2’-azino-bis(3-

ethylbenzothiazoline-6-sulfonate (ABTS) by H2O2 catalysed by HRP [18]. With this purpose 
we used this system under different concentrations and sizes of the crowding agent, as seen in 
Fig. 1B.  

The results show that the total excluded volume by the Dextran brings a greater impact 
on the velocity of the reaction than the size of the crowding agent. Moreover, the results 
indicate that both the value of vmax and Km decay as increasing the Dextran concentration in 
the sample, as depicted in Fig. 2B and Fig. 3B. 

In fact, this enzymatic system does not show any significant tendency when increasing 
the molecular weight of the crowding agent. So, regarding the obstacle size-independence, 
this kinetic behaviour is also shown in the previous case, α-chymotrypsin.  
 
Lactate dehydrogenase (LDH) from rabbit muscle: 140 kDa 

The oxidation of NADH by pyruvate catalyzed by lactate dehydrogenase performed in 
crowded media conditions reveals that the apparent kinetic parameters, vmax and Km, are 
dependent on both crowding agent size and concentration, as seen in Fig. 1C. 

In particular, it has been found that Km remains unaltered for all dextrans at low 
concentrations (25 g/L) and, at higher dextran concentrations (50-100 g/L), it shows a slight 
decrease for low molecular weight dextrans and a substantial decrease for high molecular 
weight dextrans, as seen in Fig. 2C. 

Regarding vmax, it always decreases with respect to diluted solution, but the decrease is 
significantly larger for large dextrans at high concentrations, and partially compensated for 
smaller dextrans and low concentrations [19], as seen in Fig. 3C. 

3.2. Discussion 

A schematic summary of the evidences that one can extract by analysing the crowded media 
kinetics of an enzyme under the generalized Michaelis-Menten equation (3) in crowded media 
is detailed in Table 3. Table 4 is devoted to oligomeric proteins acting as enzymes in 
catalysed reactions, which could yield different behaviour than monomeric proteins [12, 19-
21]. 

The main effect of macromolecular crowding is the excluded volume effect [1] that yields an 

increasing value of maxv  (defined as tEk ][2 ) due to an increase of protein effective 

concentration. In addition, a decrease of the effective volume for the reactants is also 
experimentally given (Table 3). However, there are different causes that produce changes in 
the kinetics parameters of the enzymatic reaction. These causes can be classified in two main 
groups, depending if the size of the obstacle, for the same excluded volume fraction, affects 
or not the kinetic parameters of the enzymatic reaction. 
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Table 3: Effect of macromolecular crowding on proteins 

Km vmax k1 k2 or [E]t vmax/Km Why? 
examples 

Refs. 

  [E]t  ? 
 Diffusion control 
 Exclude volume effect 

 [11, 16] 

 

  k2   

 Diffusion control 
 Conformational change or 

k2 is affected by changes in 
the environmental 
surroundings 

 Inhibition by product 

α-
Chymotrypsin 

[17] 

 ? k2, [E]t  ? 

 Activation control 
 Increase in chemical 

activity of E and/or S in 
crowded media 

 Exclude volume effect 

Refs. [14-15] 

 

  k2   

 Activation control 
 More affinity for the 

encounters S+E 
 Conformational change or 

k2 is affected by changes in 
the environmental 
surroundings 

HRP [18], 
LDH [19] and 

Refs.  
[13-14, 21] 

 

Table 4: Effect of macromolecular crowding on oligomeric proteins, as LDH. Mc refers 
to the molar mass of the obstacles and Mp refers to the molar mass of the protein [19]. 

Particular 
case 

Relative 
size 

Km vmax k1 k2 or [E]t vmax/Km Why? 

Mc <Mp    k2   

 Mixed activation-
diffusion control 

 Conformational 
change or k2 is 
affected by changes 
in the environmental 
surroundings  

LDH 
tetramer 
140 kDa 

Mc > Mp    k2   

 Mixed activation-
diffusion control 

 Reduction of the 
encounters S+E for 
large obstacles 

 

Effect of crowding on the reaction control 

Macromolecular crowding can affect both diffusion-controlled and activation-controlled 
enzymatic reactions through different mechanisms of action. If we try to dissect the overall 
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reaction velocities in the classical Michealis-Menten scheme (1), we can analyse the effect of 
crowding in individual rate constants and Michaelis-Menten parameters,  vmax and Km. 

In diffusion-controlled reactions, the reactive step is fast and the complex formation step is 
diffusion-dependent because a limited and/or anomalous diffusion is translate into less 
frequent enzyme-substrate encounters, which in turn means a decrease in k1. Therefore, 

provided that k2 is not modified, the Michaelis constant, Km should increase (Table 3).  

Conversely, in activation-controlled reactions, the enzyme-mediated transformation of the 
substrate onto the product is the limiting step. Thus, even if the enzyme and the substrates 
present anomalous diffusion, it will not affect the overall kinetics of the reaction, since 
diffusion is much faster than the product formation. However, macromolecular crowding will 
play another role here: when volume exclusion is not negligible, enzyme and substrate 
effective concentrations are undeniably higher, since the reaction volume is lower than in 
dilute solution, thereby causing an increase in k1, due to the increase of the affinity for the 
substrate-enzyme encounters, and therefore a decrease in Km (Table 3). 

Regarding  vmax , several mechanisms can affect its value: it has been reported that 
macromolecular crowding can affect self-association equilibrium, conformational equilibrium 
and induce conformational changes in enzymes [2, 3, 10, 20, 22]. Subsequently, 
conformational changes that affect the catalytic capability of the enzyme – via slight 
modifications of the active site or oxyanion holes – can modify k2 and thus  vmax  [20]. 

Nevertheless, the sign of this possible k2 alteration is not clear, since the crowding-induced 
conformational changes may favour or hinder the interactions between the side chains of the 
enzyme amino acids and the substrate. And hence, for now it is not possible to predict 
whether  vmax  will raise or decay in crowded media [20].  

As mentioned previously, another mechanism through which  vmax  (defined as tEk ][2 ) may 

be altered is because of higher enzyme effective concentration. Thus, an increase in enzyme 
effective concentration should result in higher values of  vmax  in crowded media. However, in 
the majority of studies,  vmax  is found to decrease and, consequently, volume exclusion must 
also cause alterations in k2. This contribution must be predominant over the effective enzyme 
concentration effect, according to the available experimental results [13, 14, 17-19, 21]. 

Effect of crowding on different enzyme/obstacle size ratios 

As shown in the results section, in some systems with enzymes such as LDH [19], crowded 
media does not only affect the kinetic behaviour as a result of the amount of excluded 
volume, but also when increasing the size of the crowding agent.  

This behaviour has been only reported for relatively big enzymes, being the malate 
dehydrogenase the smallest enzyme (MDH, 70 kDa) [21]. Moreover, not only enzyme size 
may be important in order to present this effect, but also the relative size between the enzyme 
and the obstacle. Existing data still lacks convergence in this matter: while some results such 
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as ALKP [12] and MDH [21] show that kinetic parameters are most largely affected by 
obstacles of a similar size as the enzyme, other enzymes such as LDH show that the largest 
effect occurs when obstacles are bigger than the enzyme at large amounts of excluded 
volume.  

This size-dependence suggests that depletion forces may gain importance inside the cell 
cytosol, a medium in which large amount of particles of different sizes heterogeneously 
distributed is present. 

4. CONCLUSIONS 

Different consequences of high volume occupancy on the field of enzyme kinetics have been 
addressed: on the one hand, the obstacle size-dependent functioning of oligomeric enzymes 
and, on the other hand, the effect of volume exclusion upon the reaction control of enzyme-
catalysed reactions. 
In the first one, small enzymes such as α-chymotrypsin or HRP show an obstacle size-
independent relationship, unlike bigger oligomeric enzymes such as ALKP, MDH or LDH. 
 
The later of these, LDH, also shows an interesting behaviour when increasing excluded 
volume and obstacle size:  vmax  decays slightly and Km remains constant with small obstacles 
at moderate concentrations, while both parameters clearly decay with big obstacles at high 
concentrations. These results may only be explained if the reaction control is considered as 
being mixed, and provided that it shifts from reaction to diffusion as crowding levels are 
increased.  
 
Both findings, obtained using synthetic polymers to model volume exclusion levels typically 
found in the cells, remark the necessity of reconsidering traditional in-vitro enzymology and 
setting new bases in more biophysically realistic environments.  
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