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ABSTRACT 

This paper discusses the energetics and structural preferences of “some few-boron 
species”, BH3, B2H6, [B3H8]

– and B3H9, B4H10 and B4H12 and the corresponding 
isoelectronic hydrocarbons CH2, C2H4, C3H6, C4H6 and C4H8. Nitrogen hydrides are also 
briefly discussed as are substituted derivatives. Both systematics and surprises are found. 
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1. INTRODUCTION 

Boron forms a large variety of binary species containing hydrogen. These substances are 
now generally called boranes, occasionally still called boron hydrides, and historically 
through the decades, almost never named hydroborons. By simply counting the number of 
SciFinder citations given for each compound of interest [1], we find the most thoroughly 
studied species so described are the neutral diborane(6) and decaborane(14), B2H6 and B10H14 

with ca. 9000 and 2000 reference citations respectively (very often with the total hydrogen 

count, 6 and 14, ignored in the name), and the anionic borohydride (most often [BH4]
– but 

also quite commonly [B3H8]
–, [B10H10]

2– and [B12H12]
2–) with ca. 45000 reference citations 

respectively. The list of species containing only boron and hydrogen is extensive, although 
admittedly much shorter than that of binary species of carbon with hydrogen. 

2. THE TWO BORON SPECIES, B2H6, THE RELATED HYDROCARBON 

C2H4, AND THEIR ONE-BORON AND ONE-CARBON MONOMERS 

Isoelectronic with B2H6 is ethylene, C2H4, which is among the simplest of all the 
hydrocarbons, and indeed, we are reminded of the early description of diborane(6) as having 
“a protonated double bond” [2]. Both diborane(6) and ethylene are highly stable as written 
and isolable as bulk, macroscopic samples, while neither species is isolable in the form of its 
corresponding isoelectronic one-carbon and one-boron monomer, CH2 and BH3 respectively, 
[3-6].  We note an immediate difference between CH2 and BH3: they are respectively a 
ground state triplet and singlet. Among the earliest electron diffraction studies ever reported 
was an investigation of B2H6 [7] which incorrectly suggested a structure like that of ethane, 
C2H6. For a discussion of the differing structures of diborane(6) and ethane within the 
molecular orbital framework, see [8-10] respectively. However, nearly two decades before the 
expressions “the STYX rules” and “3-center bonds” entered the chemist’s vocabulary [11] 
and just before the aforementioned electron diffraction study [7], there was a molecular 
orbital based discussion of B2H6 in which this species was assumed to have the ethane-like 
structure [12]. 

3. THE CORRESPONDING BH3 AND CH2 TRIMERS, TRIBORANE(9), 
CYCLOPROPANE, AND ALSO [B3H8]

–
 

The corresponding BH3 and CH2 trimers, B3H9 and C3H6 are recognized as cyclopropane 
and triborane(9) respectively. Indeed, long predating the conceptually useful alternative (but 
nowhere recommended) name of ethylene as “cycloethane” [13,14], in the late 19th and early 
20th centuries cyclopropane and its derivatives were not uncommonly named “trimethylenes”. 
Indeed, occasionally the words “cyclopropanes” and “trimethylenes” were both used in the 
same article [e.g.15]. However, there is a profound distinction between C3H6 and B3H9. While 
cyclopropane and numerous derivatives are isolable, see the monographs [16,17], the latter 
species triborane(9) is but a transient intermediate associated with processes such as the gas 
phase reaction of diborane(6) with BH3 [18],  the protonation of [B3H8]

– salts  [19-21] and 
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diborane(6) pyrolysis [22,23]. These studies suggest that 3-membered all-carbon rings are 
stable but 3-membered all-boron rings are not (by saying all-boron rings we neglect any 
bridging H’s in the ring atom count).  Ethylene and its substituted counterparts generally do 
not equilibrate or otherwise interconvert with the corresponding cyclopropanes.  

The thermolysis reaction of the formally simplest case of cyclopropane 
2C3H6 → 3C2H4 (1)   

is endothermic [24],  entropically favored (two molecules forming three), and unobserved in 
either direction. (At STP, this reaction may be readily calculated to have fortuitously close to 
a zero free energy change, and not surprisingly shows a significant temperature variation 
[25].) Corresponding reactions are also generally not seen for substituted derivatives of 
cyclopropane and ethylene. Among the few recorded cases [26,27] of thermolysis of a 
cyclopropane to form the corresponding ethylene is that of the perfluorinated 
hexafluorocyclopropane,  a species known to be highly strained as discussed in [28-31]. (We 
exclude from our discussion of ethylene/cyclopropane and dimer/trimer interconversions, the 
extrusion of a carbene from a cyclopropane and the more common reverse addition reaction.)  

Computational chemistry affirms the exothermicity of the transformation of triborane(9) 
into diborane [21,32-35]. 

2B3H9 → 3B2H6 (2)   
We now remind the reader that B3H9 was taken as the hydrogen bridged 3-membered ring 

species [BH2(μ-H)]3 much as B2H6 is the hydrogen bridged [BH2(μ-H)]2.  After all, there is 
another isomer of B3H9, H2B(μ-H)2BH–BH2(H2) which is calculationally found [34,35] to be 
even less stable than the aforementioned species and has ignored in most discussions of the 
chemistry of boranes.. Additionally, solution-phase protonation of the well-known [B3H8]

– 
anion results in complexes of B3H7 [20] and of BH3 [19]. As found in numerous salts, it is 
well-established crystallographically that [B3H8]

– has the 3-membered ring structure 
[(BH2)2(μ-H)2BH2]

- accompanied in the solid by diverse cations: [(H3N)2BH2]
+ [36]; 

[C6H5CH2N(CH3)3]
+, [37]; Cs+ [38]; [(C6H5)4P]+ [39];  [NH4]

+
, [40]; Na+ [41]. The [B3H8]

– 

isomer with the structure [H2B(μ-H)2BH–BH3]
– remains experimentally unknown, and 

calculationally is found to be less stable than [(BH2)2(μ-H)2BH2]
– [34,35].  

By contrast, propene, simply describable as CH2CHCH3 (as well as speaking of it as a 
simply substituted derivative of ethylene), is 33 kJ mol–1 more stable than the likewise 
isolable cyclopropane [24]. Comparable differences of enthalpies of formation differences are 
found for the four methylpropenes (isomeric butenes) and methylcyclopropane [24], and for 
the vinylpropenes (isomeric methylbutadienes and pentadienes) and vinylcyclopropane 
[42,43]. Relatedly using the enthalpy of formation data in [24], the isomeric cyanopropenes, 
whether the species chosen is the (E )-1-, (Z)-1-, and 3-derivative, are some 30–50 kJ mol–1 
more stable than cyanocyclopropane. (There are seemingly no experimental thermochemical 
data on the 2-derivative, a species more commonly known as methacrylonitrile.) This 
difference is more than doubled to 110 kJ mol–1 for the formally related species with two 
vinyl and cyclopropane moieties apiece as found in 1,3-butadiene, CH2=CH–CH=CH2, and 
bicyclobutane, CH2(CH)2CH2, and almost doubled for the species with one double bond and 
one cyclopropane, namely methylenecyclopropane [24]. 
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4. TETRABORANE(10) AND BICYCLOBUTANE, THEIR ISOMERS, 
DERIVATIVES AND SUBSTITUENT EFFECTS 

We have earlier said that B3 rings are unstable compared to 2-boron species as found in 
the comparison of B2H6 and B3H9, but more stable as found for the two isomers of the 3-
boron [B3H8]

– e.g. [32,34]. So, what is the case for B4H10? The 4-boron tetraborane(10) has 
been experimentally shown by electron diffraction and microwave spectroscopy [44,45] to 
have a structure related to that of bicyclobutane, cf. BH2(μ-H)2(BH)2(μ-H)2BH2 and 
CH2(CH)2CH2. Calculational theory [46-49] shows BH2(μ-H)2BH–BH(μ-H)2BH2 to be 
slightly less stable than BH2(μ-H)2(BH)2(μ-H)2BH2, where we remember the former had been 
earlier suggested for B4H10 [2]. (Still earlier electron diffraction measurements suggested a 
BH3–BH2–BH2–BH3 butane-like structure [50, cf. 7].) In other words, C4H6 prefers the 1,3-
butadiene structure with two ethylenes and not two 3-membered rings, i.e., CH2=CH–
CH=CH2 and not bicyclobutane, CH2(CH)2CH2 while B4H10 prefers the structure BH2(μ-
H)2B2(μ-H)2BH2 with two 3-membered rings and not BH2(μ-H)2BH–BH(μ-H)2BH2. 

Substituents have been shown to significantly affect the strain energies of the derivatives 
of ethylene (cf. the aforementioned cycloethane), cyclopropane and bicyclobutane [14]. In 
that the last cited paper dealt with substituent effects and strain energies, we accordingly 
wonder what will be found for the related derivatives of B2H6, [B3H8]

– and B4H10? How will 
the energies and enthalpies of formation of substituted diborane(6) derivatives, B2H5X,  both 
H2B(μ-H)(μ-X)BH2 and H2B(μ-H)2BHX, compare with those of the ethylene-based vinyl 
derivatives, CH2CHX? The last decade has seen a renaissance in thermochemical studies of 
vinyl derivatives. Along with many examples [24] for vinyl species, e.g. X = H and diverse 
alkyl, phenyl and other hydrocarbon substituents, we now have enthalpies of formation for 
the vinyl species: X = Cl [51], Br [52], I [51], CHO [53], COOH [54], CN [55]. This is not 
the case for the monosubstituted diboranes. Reliable structures have been reported, but these 
studies are without corresponding energetics data whether it be as enthalpies of formation. 
We have “merely” relative isomer stabilities from which it is assumed that the observed 
isomer is the more stable.  Examples include X = CH3 [56], NH2 [57], SCH3 [58], Cl [59], Br 
[60]. 

How does the enthalpy of formation difference of (BH2(μ-H))2BHX and its isomer with 
bridging X depend on the group X? What about the isomeric substituted tetraboranes wherein 
the substituent may be on boron 1, boron 2 (both endo- and exo-) or replace one of the 
bridging hydrogens? Almost nothing is known from either experiment or calculational theory: 
thermodynamic and kinetic data are almost totally absent as to the role of substitutents in their 
diverse positions on the stability of boranes. Among the few relevant observations include 
methyldiborane is known from experiment [61] to methylate tetraborane, but from the results 
of quantum chemical calculations [14] we may deduce the related trans-methylation reaction 
of propene and bicyclobutane to form ethylene and (either 1- or 2-(exo))methylbicyclobutane 
is significantly endothermic. Monomeric trimethylboron exchanges hydrogen and methyl 
groups with diborane to form methyldiboranes [62] – does this tell us that methylation 
stabilizes a plausible triborane(9) intermediate. 
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5. TETRABORANE(12) AND CYCLOBUTANE 

We close with a brief discussion of the experimentally still unknown B4 species, 
tetraborane(12) for which the structure [BH2(μ-H)]4 is plausible [22,63]. This species is a 
formal dimer of diborane(6). However, the reaction 

2[BH2(μ-H)]2 → [BH2(μ-H)]4 (3) 
has not been observed experimentally although B2H6 and its isotopomers shuffle borons and 
hydrogens [64,65]. Indeed, the dimerization of diborane is seriously endothermic [33,35] 
according to calculational theory, and is clearly entropically disfavored as well. (We now 
acknowledge that the original experimentalists suggested the exchange reaction proceeds 
through the intermediacy of BH3.) 

We recognize [BH2(μ-H)]4 as analogous to cyclobutane (what other structures could we 
have [66,67]. None of this is surprising. Ethylene and olefins in general are much more 
common than cyclobutane and its corresponding substituted derivatives [68]. The 
dimerization reaction 

2(CH2=CH2) → (CH2)4 (4) 
for the parent hydrocarbons is not observed, and for substituted counterparts the reaction is 
rarely observed without catalysts or photochemical excitation. However, this last reaction of 
two ethylenes is enthalpically favorable. This nonreaction is unquestionably fortuitous – had 
the double bonds in so many biomaterials, such as the nucleobases uracil and thymine, 
unsaturated fatty acids and related triglycerides, the steroidal cholesterol, progesterone, 
testosterone and the multiple forms of vitamin D,  vitamin A and the carotenoids, chosen to 
dimerize, life would be unrecognizable if not unrealized. 

6. STILL OTHER FEW-BORON CONTAINING SPECIES 

There are yet other few-boron containing species. These include the nominally 
homologous series B2H2, B3H3 and B4H4.  Are they truly homologous and so reminiscent of 
the per-aza-cycloalkanes NxHx diimide, triaziridine, tetrazetidine and their acyclic 
counterparts [69]. The first species B2H2 has been observed [70] in a cryogenic matrix to be 
the linear triplet H–B=B–H with a pair of degenerate singly occupied π orbitals. What about 
the still unknown isomer H2B–B? We are reminded of diimide amd its substituted 
counterparts, azo compounds, and their fragile and much less stable isomers H2N–N and 
aminonitrenes [71]?  
        The existence of B3H3 has been inferred from the presence of its parent ion via mass 
spectrometry [72]. As such, it remains experimentally unknown whether neutral B3H3 is 
either of the 3-membered ring species, the B–B or B(H) bridged  (BH)3 and [B(H)]3 
respectively, or perchance a BH2 derivative of B2H2, H–B=B–BH2. Triaziridines and 
triazenes, cyclo-(NR)3 and R–N=N–NR2 respectively, are both established classes of 
compounds) although their enthalpy of formation difference remains unavailable [73]. 
From experiment, we know of the enthalpy of formation of few triazenes (e.g. 
diphenyltriazene [24]) and no triaziridine at all.  The inherent complexity of B4H4 is 
demonstrated by highly colored tetraamino derivatives, the blue and yellow diisopropylamino 
and tetramethylpiperidino species with their nonplanar central rings [74] and the tetrahedral 
mixed halo and tetra-tert-butyl species [75]. So, what about N4H4 and its derivatives? The 



M. Ponikvar-Svet & J.F. Liebman /New Frontiers in Chemistry 24 (2015) 27-36 32 

enthalpy of formation of some tetrazenes is available from experimental measurements but no 
tetrahedral assemblage of nitrogens including N4 is known for comparison.  So, what about 
yet another B4H4 isomer, BH2–B=B–BH2? There are seemingly few related species, much 
less relevant data. Indeed, only its 1,4-dioxo derivative B4O2 [76]and its radical anion come to 
mind.  Barring meaningful comparisons, discussion of all of these species in this concluding 
section of the current article will thus be deferred. 
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